

Biología Molecular y Fraude Alimentario

BQ. Angélica Araneda Juranovic

Asesora YGEIA

Agosto 2018

Índice

- ¿Qué es fraude?
- Motivaciones y consecuencias
- ¿Cuáles son los alimentos más afectados?
- ¿Qué pasa con la legislación?
- ¿Cómo podemos detectar un fraude?
- Herramientas de Biología Molecular y su aplicación
- Como podemos ayudar desde YGEIA
- ¿Qué nos depara el futuro?
- Comentarios y preguntas

¿Qué es fraude?

 Del latín fraus, fraude es una acción que resulta contraria a la verdad y a la rectitud. El fraude, se comete en perjuicio de otra persona o contra

una organización (como el Estado o una empresa)

Aplicado a la producción de alimentos, **fraude** puede significar:

Etiquetado indebido

Poner declaraciones falsas en los envases para obtener ganancias económicas.

Dilución

Mezclar un ingrediente líquido de alto valor con un líquido de menor valor.

Ocultación

Ocultar la baja calidad de los ingredientes o productos alimentarios.

Falsificación

Copia de la marca, el concepto de embalaje, la receta, el método de procesamiento, etc de los productos alimenticios para el beneficio económico.

Sustitución

Reemplazar un ingrediente o parte del producto de alto valor con otringrediente o parte del producto de menor valor.

Mejora no aprobada

Agregar materiales desconocidos y no declarados a los productos alimenticios para mejorar los atributos de calidad.

Mercado gris/robo/desvío

Venta de exceso de producto no declarado.

Motivaciones para cometerlo

- · La principal, es producir una ganancia económica
- También puede haber otras como:
 - Negligencia o error
 - Falla en Controles de Calidad
 - Daño de la reputación de una marca
 - Terrorismo

Consecuencias

- Riesgo para la Salud Pública
- Económicas
- Pérdida de la confianza del consumidor
- Daño para el prestigio de una marca
- Pérdida de certificaciones de productos
 - Halal o Kosher
 - Veganos o vegetarianos
 - Orgánicos
 - Libres de GMO
 - Libres de alérgenos

¿Cuáles son los productos más afectados?

- Todo tipo de alimentos es susceptible de ser manipulado de forma fraudulenta de una u otra manera
- Lo más peligroso es que se pierda la inocuidad pero también la confianza del consumidor

¿Qué pasa con la legislación?

- Legislación desigual:
 - EEUU y UE trabajan para proteger la cadena alimenticia de fraude. Hay numerosas guías y leyes para mitigar el problema (US FDA, UK FSA, FAO)
 - Débil o nula en nuestro país: "si no es ley no se hace"
- Falta de fiscalización, no se cuenta con las herramientas apropiadas
- Nuevos mecanismos de control a partir de los consumidores que exigen sus derechos

PROTECTING AMERICA'S CONSUMERS

Como funciona la ley cuando hay presión de las autoridades y el consumidor

- 2012: Estudio demostró que casi el 40% del pescado consumido en la UE no correspondía a la especie rotulada. Como consecuencia se inició el Proyecto conocido como "Labelfish" para mejorar el rotulado y la trazabilidad de los productos pesqueros
- Resultado: "Reglamento de la UE 1379/2013" vigente desde el 13/12/2014
- **Cambio:** obliga a rotular los productos pesqueros con el nombre comercial y científico; el método de producción (acuicultura, pesca de agua dulce), el tipo de pesca (arpón, trampa, red de arrastre) y la zona de origen

¿Cómo podemos detectar un fraude?

- Debido a su expansión, diversidad y sofisticados métodos, puede ser muy difícil identificar un fraude alimentario. La mayoría de las veces se actúa reactivamente cuando el daño ya está hecho
- Algunos fraudes de connotación mundial:
 - 1981: Venta en España de aceite de oliva adulterado con diversos productos químicos, causó más de 300 muertes
 - 2008: Adición de melamina en fórmula de leche maternizada en China derivó en 50 000 bebés hospitalizados y 6 muertos
 - 2013: Sustitución de carne de caballo por carne de vacuno en hamburguesas, lasañas, albóndigas y otros productos congelados en varios países europeos
 - 2015: Inglaterra, murió un hombre de 38 años por una reacción alérgica después de consumir un Curry Indio adulterado con maní
 - 2016: Australia, murió un niño de 10 años a causa de una bebida de coco que contenía leche de vaca no declarada

¿Entonces, cómo podemos identificar un fraude?

• Depende de:

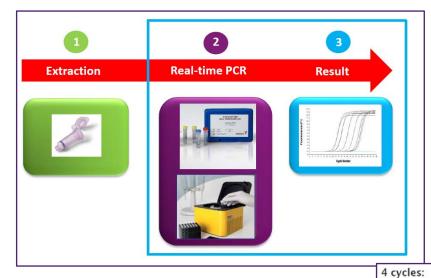
- Tipo de fraude
- Nivel de sofisticación

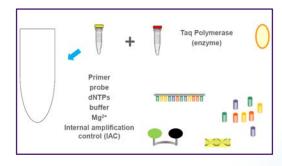
• Desde el laboratorio:

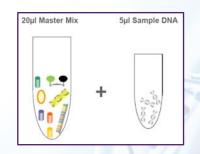
- Inspección visual
- Aspectos organolépticos
- Métodos analíticos simples
- ELISA
- HPLC
- Distintas aplicaciones de la Espectroscopía de Masa
- Análisis moleculares

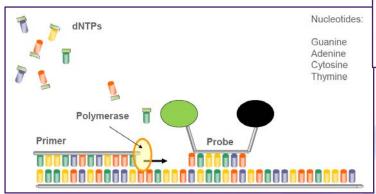
Herramientas de Biología Molecular

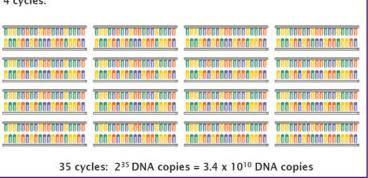
- Secuenciación: decodificación del genoma completo de una especie animal o vegetal
- PCR en tiempo real: análisis de secuencias características y específicas del DNA nuclear de una especie animal, vegetal o transgénica
- **DNA fingerprint**: análisis de secuencias específicas y características de DNA mitocondrial

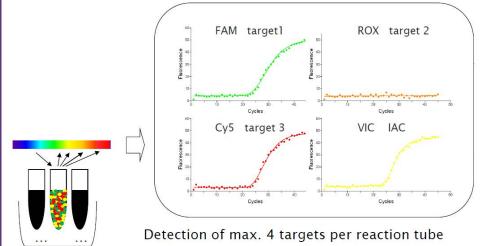

PCR en tiempo real


- Altamente sensible y específico
- Basta con una pequeña cantidad de muestra
- Permite identificar pero también diferenciar; incluso en mezclas
- Se puede utilizar en alimentos sin procesar, frescos, cocinados o altamente procesados
- Tecnología accesible en Chile: equipos, reactivos y asesor











PCR en tiempo real aplicado a FRAUDE

- Detección y diferenciación de distintas especies animales:
 - Certificación de alimentos Halal o Kosher
 - Certificación de calidad del producto. Ej: 100% carne vacuno
 - Autentificación de productos del mar: salmón, trucha, atún, etc.
 - Organismos Certificadores o Fiscalizadores
- Certificación de alimentos vegetarianos
- Detección de alérgenos certificación, fiscalización
- Certificación de alimentos libres de OGM

Identificación y diferenciación animal

SureFood® ANIMAL

SureFood® PREP	
Basic S1052	
Extraction control detection kit	2.73
SureFast* Animal+Plant Control + ICD	F4053
SureFood® ANIMAL ID - qualitative real-	time PCR
4plex Beef/Sheep/Goat + IAAC	S6121
4plex Pork/Chicken/Turkey + IAAC	S6123
4plex Beef/Pork/Horse + IAAC	S6126 New
Beef IAAC	S6113
Horse IAAC	S6118
Horse & Donkey IAAC	S6119
Pork SENS PLUS	S6017
Pork IAAC	S6114
Waterbuffalo IAAC	S6117
Camel IAAC	S6124
Chicken IAAC	S6115
Turkey IAAC	S6116
Cat & Dog IAAC	S6112
Rabbit IAAC	S6120
Poultry IAAC (chicken, turkey, duck, goose)	S6125 New

IAAC = Internal Amplification and Animal Control Validated on Bio-Rad CFX.96, Qiagen Rotor-Gene Q, Roche LC*480 and Stratagene/Agilent Mx3005P

SureFood* ANIMAL QUANT – quantitative real-time PCR		
Beef	\$1010	
Equus	\$1016	
Pork	\$1011	
Chicken	\$1014	


SureFood® FISH ID — qualitative real-time	PCR
Halibut IAAC 3plex (black and white halibut)	56201
Oncorhynchus tshawytscha IAAC (chinook salmon)	S6301
Oncorhynchus mykiss IAAC (rainbow trout)	S6302
Oncorhynchus gorbuscha IAAC (pink/humpback salmon)	S6303
Oncorhynchus nerka IAAC (red salmon)	S6304
Salmo trutta IAAC (trout)	S6305
Salmo salar IAAC (atlantic salmon)	S6306
Melanogrammus aeglefinus IAAC (haddock)	S6307
Gadus macrocephalus IAAC (pacific cod)	S6308
Pollachius virens IAAC (pollock/saithe)	S6309
Gadus morhua IAAC (atlantic cod)	S6310
Merluccius merluccius (hake)	S6311
Merlangius merlangus IAAC (whiting)	S6312
Gadus chalcogrammus IAAC (alaska pollock)	S6313

FISH ID kits contain 50 reactions

Detección y cuantificación de Alérgenos

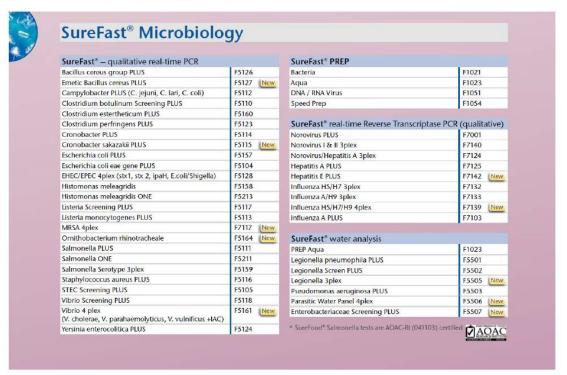
SureFood® ALLERGEN Portfolio

Screening + Identificación + Cuantificación OGM

SureFood® GMO

SureFood® PREP	
Basic	\$1052
Advanced	\$1053
Extraction control detection kit	
SureFast® Animal+Plant Control + ICD	F4053
SureFood® GMO	4 Th
Plant PLUS	52049
Plant	52056
Plant 4plex Corn/Soya/Canola/Cotton	S2156
Plant 4plex Corn/Soya/Canola + IAC	\$2158
SureFood® GMO SCREEN - qualitative	e real-time PCR
35S + NOS + FMV	S2026
4plex 35S/NOS/FMV + IAC	52126
4plex BAR/NPTII/PAT/CTP2:CP4 EPSPS	S2127
CaMV	S2027
P35S:BAR Rice	52022

- * MON8/708+CV12//DP305423/MON8/701/MON8/769
- ** MS8/6G1/3/145 Canola
- *** MON88302/DPO734906/RF3 Canola


SureFood* GMO ID – qualitative real-t	ime PCR
MIR162 Corn	S2035
MON863 Corn	S2037
MS8 Canola	S2062
Bt63 Rice	S2024
Roundup Ready Soya	S2030
RR2Y Soya	S2034
A2704-12 Soya	S2057
4plex Soya I*	S2161
4plex Canola I**	S2166
4plex Canola II***	S2167
SureFood® GMO QUANT - quantitativ	e real-time PCR
Bt176 Corn	S2015
Bt11 Corn	S2016
T25 Corn	S2017
MON810 Corn	S2019
35S Corn	S2020
NK603 Corn	S2050
MON863 Corn	S2051
MIR162 Corn	S2135
GA21 Corn	S2054
Roundup Ready Soya	S2014
35S Soya	S2028
RR2Y Soya	S2029

Otras aplicaciones: PCR en tiempo real

- Detección de microorganismos patógenos en alimentos y agua
- Detección de virus de interés humano y animal

SureFast® Microbiology Portfolio

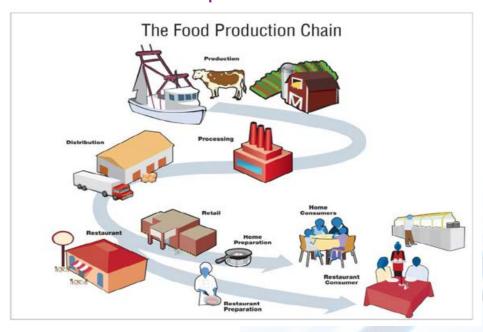
 Análisis de bacterias y levaduras de interés en jugos, vinos y cervezas

Análisis de bebidas

Producto	Descripción	Cantidad	N.º Ref.
Zumo	Preparación de ADN	•	
GEN-IAL* Simplex* Easy Spin DNA kit	Preparación de ADN de aliciclobacilos, p. ej. de zumo o concentrados de fruta o verduras	50 preparaciones	SES 0050
	PCR en tiempo real multiplex cualitativo		
GEN-IAL® Alicyclobacillus multiplex TaqMan™	Identificación y diferenciación de ADN bacteriano: Alicydobacillus spp., A. acidocaldarius, A. acidoterrestris	50 reacciones	TPABM 0050
Vino	Preparación de ADN		
GEN-IAL* Simplex* Easy Wine kit	Preparación de ADN de muestras de vino	100 preparaciones	SEW 0100
	PCR en tiempo real multiplex cualitativo		
GEN-IAL® First-Wine PCR Screening TaqMan™	Identificación y diferenciación de ADN de bacterias y levaduras descomponedoras del vino: Lactobacillus, Pediococcus, Oenococcus oeni, bacterias acéticas, levaduras	50 reacciones	TPWS 0050
GEN-IAL® First-Wine PCR Screening TaqMan™	Detección de ADN de bacterias del deterioro del vino: Lactobacillus, Pediococcus, Oenococcus oeni, bacterias acéticas	50 reacciones	TPWSOH 005
	PCR cualitativo en tiempo real		
GEN-IAL* QuickGEN* First-Oenococcus Oeni	Detección específica de ADN bacteriano	50 reacciones	QTPOE0050
GEN-IAL® First-Wine Screening Biogene Amine	Detección específica de ADN de bacterias que forman aminas biógenas	50 reacciones	BAM 0050
Vino/cerveza	PCR cualitativo en tiempo real		
GEN-IAL® QuickGEN* Acetic acid bacteria TaqMan®	Detección específica de ADN bacteriano	50 reacciones	QTPA 0050
GEN-IAL® Dekkera bruxellensis TaqMan™ FH	Detección específica de ADN de levaduras (FAM HEX)	50 reacciones	TPYDB 0050 FH
GEN-IAL® Dekkera bruxellensis TaqMan™ FR	Detección específica de ADN de levaduras (FAM ROX)	50 reacciones	TPYDB 0050 FR
GEN-IAL® Dekkera bruxellensis TaqMan™ Spartan DX-12	Detección específica de ADN de levaduras	50 reacciones	TPYDB 0050 SP
GEN-IAL® Dekkera bruxellensis TaqMan™	Detección específica de ADN de <i>Delkera bruxellensis</i> perfil alto: ABI 7500, Agilent MX 3005P	48 reacciones	QTPYDB0048 high
GEN-IAL® Dekkera bruxellensis TaqMan™	Detección específica de ADN de <i>Delkera bruxellensis</i> perfil bajo: Agilent Aria MX, Biorad CFX96, MyGo Pro	48 reacciones	QTPYDB0048 low
GEN-IAL® Zygosaccharomyces bailii	Detección específica de ADN de Zygosaccharomyces bailii perfil bajo: Agilent Aria MX, Biorad CFX96, MyGo Pro	48 reacciones	QTPYZB0048 low

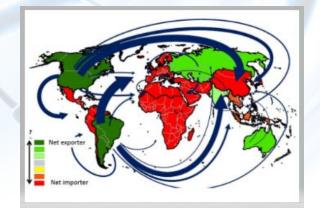
¿Cómo podemos ayudar desde YGEIA?

- Asesoramos a los interesados
- Empresa invierte consistentemente en I & D
- Ponemos al alcance las herramientas tecnológicas de última generación
- Accesibilidad a la información acerca de los equipos y/o reactivos
- Acompañamos durante el proceso


Pero no termina aquí...

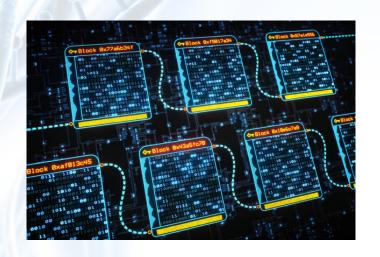
porque los riesgos siempre van a estar presentes

Tendencias, exigencias, cambio mentalidad


 Complejidad de la cadena de producción

• Guerra por alimentos

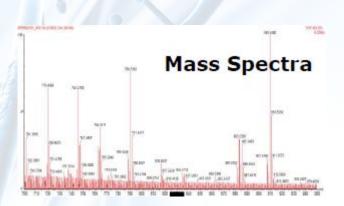
Globalización



- Consumidores más informados y exigentes
- Producción sostenible y sustentable
- Requerimiento de alimentos orgánicos
- Leyes estandarizadas y con penas más duras
- Tecnología más accesible

¿Cómo se vos viene el futuro?

- En el sector de la cadena de producción, el desarrollo de las tecnologías blockchain nos va a permitir:
 - Garantizar la trazabilidad del producto
 - Aumentar la seguridad de los datos
 - Fomentar la colaboración entre los eslabones de la cadena de suministro
 - Proporcionar una forma de recuperar la confianza de los consumidores
 - Evitar que la industria alimentaria se vea desacreditada por fraudes



Nuevas tecnologías de análisis

- Moleculares: DNA fingerprint
- LC-MS/MS
- ECI/MS
- Futuras:
 - ¿Lectores de DNA portátiles?
 - ¿Lector de CB para trazabilidad?
 - Aplicaciones en el teléfono

¿Cómo combatimos el fraude?

Bases de datos Big Data Sistemas de alerta temprana

Traspaso del conocimiento Investigación – Tecnología Redes más fuertes **Nuevos Análisis**

https://ec.europa.eu/jrc/sites/jrcsh/files/jrc-food-fraud-summary-june-2018.pdf

¿Quién gana si lo combatimos? = TODOS

- Consumidor
 - Confianza
 - Calidad
- Las empresas
 - Credibilidad
 - Competitividad
 - Ganancias
- La salud pública
 - Se protege
 - Disminuyen costos

¡Muchas Gracias!

a sanus vita